Contents
Images
Upload your image
DSS Images Other Images
Related articles
An Eccentric Hot Jupiter Orbiting the Subgiant HD 185269 We report the detection of a Jupiter-mass planet in a 6.838 day orbitaround the 1.28 Msolar subgiant HD 185269. The eccentricityof HD 185269b (e=0.30) is unusually large compared to other planetswithin 0.1 AU of their stars. Photometric observations demonstrate thatthe star is constant to +/-0.0001 mag on the radial velocity period,strengthening our interpretation of a planetary companion. This planetwas detected as part of our radial velocity survey of evolved starslocated on the subgiant branch of the H-R diagram-also known as theHertzsprung gap. These stars, which have masses between 1.2 and 2.5Msolar, play an important role in the investigation of thefrequency of extrasolar planets as a function of stellar mass.Based on observations obtained at the Lick Observatory, which isoperated by the University of California.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Radial velocity measurements. II - Ground-based observations of the program stars for the HIPPARCOS satellite New radial velocities for 446 stars of magnitude 9.0 or brighter in 1616-sq-deg fields of the Northern Hemisphere are determined by automaticPDS measurement of 80-A/mm-dispersion spectra obtained at theObservatoire de Haute Provence using a 17-cm-diameter objective prism.The fields were selected to provide data for the input catalog of theESA Hipparcos astrometric satellite. The measurement techniques andprecision are discussed, and the results are presented in extensivetables and graphs.
| New UBVRI photometry for 900 supergiants A description is presented of the results obtained in connection with asystematic program of supergiant photometry on the Johnson UBVRI system.During the eight years after the start of the program, almost 1000 starshave been observed, about 400 three or more times each. The originalselection of stars used the spectral type catalog of Jaschek et al.(1964) to choose supergiants. Since observations were possible from bothChile and Canada, no declination limits were imposed, and no particularselection criteria were imposed other than to eliminate carbon stars.These are so red as to require enormous extrapolations of thetransformation equations.
| The fourth meridian catalog of Besancon Observatory The catalog presented gives differential meridian positions for 670F-type stars between plus 15 and plus 45 deg declination. The positionsare reduced to the equinox of 1950.0 without proper motions; 333 FK4stars were used as reference stars. A minimum of three and an average offive transits of each program star were observed photoelectrically usinga Gautier transit circle and a Hog grid. The internal accuracy ofindividual measurements is shown to range from 0.013 sec in rightascension and 0.30 arcsec in declination for brighter stars under betterobserving conditions to 0.020 sec in right ascension and 0.38 arcsec indeclination for fainter stars under worse conditions. The standarderrors were applied to compute weighted mean positions, mean epochs, andunweighted means for the program stars. Mean corrections for 283 FK4stars are also provided.
| MK classifications for F-and G-type stars. 3. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974AJ.....79..682H&db_key=AST
| Stellar Spectra in Milky way Regions. II. a Region in Cygnus. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1950ApJ...112...90M&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Schwan |
Right ascension: | 19h32m54.90s |
Declination: | +31°14'09.9" |
Apparent magnitude: | 6.701 |
Distance: | 134.409 parsecs |
Proper motion RA: | 8.6 |
Proper motion Dec: | 8.8 |
B-T magnitude: | 7.197 |
V-T magnitude: | 6.742 |
Catalogs and designations:
|