Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 111721


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Chemical Abundances of Outer Halo Stars in the Milky Way
We present the chemical abundances of 57 metal-poor ([Fe/H] 5 kpc above andbelow the Galactic plane. High-resolution (R ˜ 50000-55000), highsignal-to-noise (S/N > 100) spectra for the sample stars obtainedwith Subaru/HDS were used to derive the chemical abundances of Na, Mg,Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y, and Ba with an LTE abundance analysiscode. The resulting abundance data were combined with those presented inthe literature that mostly targeted at smaller Zmax stars,and both data were used to investigate any systematic trends in detailedabundance patterns depending on their kinematics. It was shown that, inthe metallicity range of ?2 < [Fe/H] < ?1, the [Mg/Fe]ratios for stars with Zmax > 5 kpc are systematicallylower (˜0.1 dex) than those with a smaller Zmax. Forthis metallicity range, a modest degree of depression in the [Si/Fe] andthe [Ca/Fe] ratios was also observed. This result of lower [?/Fe]for the assumed outer halo stars is consistent with previous studiesthat found a signature of lower [?/Fe] ratios for stars withextreme kinematics. The distribution of the [Mg/Fe] ratios for the outerhalo stars partly overlaps with that for stars belonging to the MilkyWay dwarf satellites in the metallicity interval of ?2 < [Fe/H]< ?1 and spans a range intermediate between the distributionsfor the inner halo stars and the stars belonging to the satellites. Ourresults confirm the inhomogeneous nature of the chemical abundanceswithin the Milky Way stellar halo, depending on the kinematic propertiesof the constituent stars, as suggested by earlier studies. Possibleimplications for the formation of the Milky Way halo and its relevanceto the suggested dual nature of the halo are discussed.

Evidence of Tidal Debris from ? Cen in the Kapteyn Group
This paper presents a detailed kinematic and chemical analysis of 16members of the Kapteyn moving group. The group does not appear to bechemically homogenous. However, the kinematics and the chemicalabundance patterns seen in 14 of the stars in this group are similar tothose observed in the well-studied cluster, ? Centauri (?Cen). Some members of this moving group may be remnants of the tidaldebris of ? Cen, left in the Galactic disk during the merger eventthat deposited ? Cen into the Milky Way.

Fast Winds and Mass Loss from Metal-Poor Field Giants
Echelle spectra of the infrared He I λ10830 line were obtainedwith NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giantstars including those on the red giant branch (RGB), asymptotic giantbranch (AGB), and red horizontal branch (RHB). The presence of this He Iline is ubiquitous in stars with T effgsim 4500 K andMV fainter than -1.5, and reveals the dynamics of theatmosphere. The line strength increases with effective temperature for Teffgsim 5300 K in RHB stars. In AGB and RGB stars, the linestrength increases with luminosity. Fast outflows (gsim 60 kms-1) are detected from the majority of the stars andabout 40% of the outflows have sufficient speed as to allow escape ofmaterial from the star as well as from a globular cluster. Outflowspeeds and line strengths do not depend on metallicity for our sample([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism forthese winds derives from magnetic and/or hydrodynamic processes. Gasoutflows are present in every luminous giant, but are not detected inall stars of lower luminosity indicating possible variability. Mass lossrates ranging from ~3 × 10-10 to ~6 ×10-8 M sun yr-1 estimatedfrom the Sobolev approximation for line formation represent values withevolutionary significance for red giants and RHB stars. We estimate that0.2 M sun will be lost on the RGB, and the torque of thiswind can account for observations of slowly rotating RHB stars in thefield. About 0.1-0.2 M sun will be lost on the RHB itself.This first empirical determination of mass loss on the RHB maycontribute to the appearance of extended horizontal branches in globularclusters. The spectra appear to resolve the problem of missingintracluster material in globular clusters. Opportunities exist for"wind smothering" of dwarf stars by winds from the evolved population,possibly leading to surface pollution in regions of high stellardensity.Data presented herein were obtained at the W. M. Keck Observatory, whichis operated as a scientific partnership among the California Instituteof Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach
Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527

Chemical Inhomogeneities in the Milky Way Stellar Halo
We have compiled a sample of 699 stars from the recent literature withdetailed chemical abundance information (spanning –4.2lsim [Fe/H]lsim+0.3), and we compute their space velocities and Galactic orbitalparameters. We identify members of the inner and outer stellar halopopulations in our sample based only on their kinematic properties andthen compare the abundance ratios of these populations as a function of[Fe/H]. In the metallicity range where the two populations overlap(–2.5lsim [Fe/H] lsim–1.5), the mean [Mg/Fe] of the outerhalo is lower than the inner halo by –0.1 dex. For [Ni/Fe] and[Ba/Fe], the star-to-star abundance scatter of the inner halo isconsistently smaller than in the outer halo. The [Na/Fe], [Y/Fe],[Ca/Fe], and [Ti/Fe] ratios of both populations show similar means andlevels of scatter. Our inner halo population is chemically homogeneous,suggesting that a significant fraction of the Milky Way stellar halooriginated from a well-mixed interstellar medium. In contrast, our outerhalo population is chemically diverse, suggesting that anothersignificant fraction of the Milky Way stellar halo formed in remoteregions where chemical enrichment was dominated by local supernovaevents. We find no abundance trends with maximum radial distance fromthe Galactic center or maximum vertical distance from the Galactic disk.We also find no common kinematic signature for groups of metal-poorstars with peculiar abundance patters, such as the α-poor stars orstars showing unique neutron-capture enrichment patterns. Several starsand dwarf spheroidal systems with unique abundance patterns spend themajority of their time in the distant regions of the Milky Way stellarhalo, suggesting that the true outer halo of the Galaxy may have littleresemblance to the local stellar halo.

Strömgren Photometry of Galactic Globular Clusters. I. New Calibrations of the Metallicity Index
We present a new calibration of the Strömgren metallicity indexm1 using red giant (RG) stars in four globular clusters (GCs:M92, M13, NGC 1851, 47 Tuc) with metallicity ranging from -2.2 to -0.7,marginally affected by reddening [E(B-V)<=0.04] and with accurate(u,v,b,y) photometry. The main difference between the newmetallicity-index-color (MIC) relations and similar relations availablein the literature is that we have adopted the u-y and v-y colors insteadof b-y. These colors present a stronger sensitivity to effectivetemperature, and the MIC relations show a linear slope. The differencebetween photometric estimates and spectroscopic measurements for RGs inM71, NGC 288, NGC 362, NGC 6397, and NGC 6752 is 0.04+/-0.03 dex(σ=0.11 dex). We also apply the new MIC relations to 85 field RGswith metallicity ranging from -2.4 to -0.5 and accurate reddeningestimates. We find that the difference between photometric estimates andspectroscopic measurements is -0.14+/-0.01 dex (σ=0.17 dex). Wealso provide two sets of MIC relations based on evolutionary models thathave been transformed into the observational plane by adopting eithersemiempirical or theoretical color-temperature relations. We apply thesemiempirical relations to the nine GCs and find that the differencebetween photometric and spectroscopic metallicities is 0.04+/-0.03 dex(σ=0.10 dex). A similar agreement is found for the sample of fieldRGs, with a difference of -0.09+/-0.03 dex (with σ=0.19 dex). Thedifference between metallicity estimates based on theoretical relationsand spectroscopic measurements is -0.11+/-0.03 dex (σ=0.14 dex)for the nine GCs and -0.24+/-0.03 dex (σ=0.15 dex) for the fieldRGs. Current evidence indicates that new MIC relations providemetallicities with an intrinsic accuracy better than 0.2 dex.Based in part on observations collected with the 1.54 m Danish Telescopeoperated at ESO (La Silla, Chile) and with the Nordic Optical Telescope(NOT) operated at La Palma (Spain).

Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations
We present a new set of model predictions for 16 Lick absorption lineindices from Hδ through Fe5335 and UBV colors for single stellarpopulations with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from-1.3 to +0.3, and variable abundance ratios. The models are based onaccurate stellar parameters for the Jones library stars and a new set offitting functions describing the behavior of line indices as a functionof effective temperature, surface gravity, and iron abundance. Theabundances of several key elements in the library stars have beenobtained from the literature in order to characterize the abundancepattern of the stellar library, thus allowing us to produce modelpredictions for any set of abundance ratios desired. We develop a methodto estimate mean ages and abundances of iron, carbon, nitrogen,magnesium, and calcium that explores the sensitivity of the variousindices modeled to those parameters. The models are compared to high-S/Ndata for Galactic clusters spanning the range of ages, metallicities,and abundance patterns of interest. Essentially all line indices arematched when the known cluster parameters are adopted as input.Comparing the models to high-quality data for galaxies in the nearbyuniverse, we reproduce previous results regarding the enhancement oflight elements and the spread in the mean luminosity-weighted ages ofearly-type galaxies. When the results from the analysis of blue and redindices are contrasted, we find good consistency in the [Fe/H] that isinferred from different Fe indices. Applying our method to estimate meanages and abundances from stacked SDSS spectra of early-type galaxiesbrighter than L*, we find mean luminosity-weighed ages of theorder of ~8 Gyr and iron abundances slightly below solar. Abundanceratios, [X/Fe], tend to be higher than solar and are positivelycorrelated with galaxy luminosity. Of all elements, nitrogen is the morestrongly correlated with galaxy luminosity, which seems to indicatesecondary nitrogen enrichment. If that interpretation is correct, thisresult may impose a lower limit of 50-200 Myr to the timescale of starformation in early-type galaxies. Unlike clusters, galaxies show asystematic effect whereby higher order, bluer, Balmer lines yieldyounger ages than Hβ. This age discrepancy is stronger for lowerluminosity galaxies. We examine four possible scenarios to explain thistrend. Contamination of the bluer indices by a metal-poor stellarpopulation with a blue horizontal branch cannot account for the data.Blue stragglers and abundance-ratio effects cannot be ruled out, as theycan potentially satisfy the data, even though this can only be achievedby resorting to extreme conditions, such as extremely high [O/Fe] orspecific blue-straggler frequencies. The most likely explanation is thepresence of small amounts of a young/intermediate-age stellar populationcomponent. We simulate this effect by producing two-component models andshow that they provide a reasonably good match to the data when the massfraction of the young component is typically a few percent. Ifconfirmed, this result implies star formation has been extended inearly-type galaxies, and more so in less massive galaxies, which seemsto lend support to the ``downsizing'' scenario. Moreover, it impliesthat stellar population synthesis models are capable of constraining notonly the mean ages of stellar populations in galaxies, but also theirage spread.

Measuring the Balmer Jump and the Effective Gravity in FGK Stars
It is difficult to accurately measure the effective gravity (logg) inlate-type stars using broadband (e.g., UBV or SDSS) or intermediate-band(uvby) photometric systems, especially when the stars can cover a rangeof metallicities and reddenings. However, simple spectroscopicobservational and data reduction techniques can yield accurate valuesfor logg through comparison of the Balmer jumps of low-resolutionspectra with recent grids of synthetic flux spectra.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman
We develop and test a method for the estimation of metallicities([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhancedmetal-poor (CEMP) stars based on the application of artificial neuralnetworks, regressions, and synthesis models to medium-resolution (1-2Å) spectra and J-K colors. We calibrate this method by comparisonwith metallicities and carbon abundance determinations for 118 starswith available high-resolution analyses reported in the recentliterature. The neural network and regression approaches make use of apreviously defined set of line-strength indices quantifying the strengthof the Ca II K line and the CH G band, in conjunction with J-K colorsfrom the Two Micron All Sky Survey Point Source Catalog. The use ofnear-IR colors, as opposed to broadband B-V colors, is required becauseof the potentially large affect of strong molecular carbon bands onbluer color indices. We also explore the practicality of obtainingestimates of carbon abundances for metal-poor stars from the spectralinformation alone, i.e., without the additional information provided byphotometry, as many future samples of CEMP stars may lack such data. Wefind that although photometric information is required for theestimation of [Fe/H], it provides little improvement in our derivedestimates of [C/Fe], and hence, estimates of carbon-to-iron ratios basedsolely on line indices appear sufficiently accurate for most purposes.Although we find that the spectral synthesis approach yields the mostaccurate estimates of [C/Fe], in particular for the stars with thestrongest molecular bands, it is only marginally better than is obtainedfrom the line index approaches. Using these methods we are able toreproduce the previously measured [Fe/H] and [C/Fe] determinations withan accuracy of ~0.25 dex for stars in the metallicity interval-5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. Athigher metallicity, the Ca II K line begins to saturate, especially forthe cool stars in our program, and hence, this approach is not useful insome cases. As a first application, we estimate the abundances of [Fe/H]and [C/Fe] for the 56 stars identified as possibly carbon-rich, relativeto stars of similar metal abundance, in the sample of ``strong G-band''stars discussed by Beers, Preston, and Shectman.

A New Definition for the Ca4227 Feature: Is Calcium Really Underabundant in Early-Type Galaxies?
We have investigated the abundance of calcium in early-type galaxies bymeasuring the strength of the Ca I λ4227 absorption line in theirintegrated spectra. The database used is the large sample of early-typegalaxy integrated spectra in Caldwell and coworkers. We have measured Caabundances from the Ca I λ4227 feature both by using the LickCa4227 index and by defining a new index, Ca4227r, thatavoids the CN4216 molecular band in the continuum on the blueward sideof the line. With the new index definition we measure Ca abundances thatare systematically ~0.3 dex higher than with the Lick Ca4227 index. Theresult is that with the new index definition we obtain higher [Ca/Fe]abundances in early-type galaxies, which are more consistent with theirwell-known [Mg/Fe] overabundances. Hence, we suggest that Ca might beslightly enhanced, relative to Fe, in early-type galaxies.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

On the Galactic chemical evolution of sulfur
Sulfur abundances have been determined for ten stars to resolve a debatein the literature on the Galactic chemical evolution of sulfur in thehalo phase of the Milky Way. Our analysis is based on observations ofthe S I lines at 9212.9, 9228.1, and 9237.5 Å for stars for whichthe S abundance was obtained previously from much weaker S I lines at8694.0 and 8694.6 Å. In contrast to the previous results showing[S/Fe] to rise steadily with decreasing [Fe/H], our results show that[S/Fe] is approximately constant for metal-poor stars ([Fe/H] -1)at [S/Fe] ≃ +0.3. Thus, sulfur behaves in a similar way to theother \alpha elements, with an approximately constant [S/Fe] formetallicities lower than [Fe/H]≃ -1. We suggest that the reasonfor the earlier claims of a rise of [S/Fe] is partly due to the use ofthe weak S I 8694.0 and 8694.6 Å lines and partly uncertainties inthe determination of the metallicity when using Fe I lines. The S I9212.9, 9228.1, and 9237.5 Å lines are preferred for an abundanceanalysis of sulfur for metal-poor stars.

Comparing Deep Mixing in Globular Cluster and Halo Field Giants: Carbon Abundance Data from the Literature
The behavior of carbon abundance as a function of luminosity is used tocompare the rates of deep mixing within red giants of four globularclusters and the Galactic halo field population. Measurements of [C/Fe]for the clusters M92, NGC 6397, M3, and M13 have been compiled from theliterature, together with the Gratton et al. data for halo field stars.Plots of [C/Fe] versus absolute visual magnitude show that forMV<+1.6 the rate of decline of carbon abundance withincreasing luminosity on the red giant branch isd[C/Fe]/dMV~0.22+/-0.03 among the field stars, as well as inM92, NGC 6397, and M3. Among giants fainter than MV=+1.6 thevariation of [C/Fe] with absolute magnitude is much less. The dataindicate that the rate at which deep mixing introduces carbon-depletedmaterial into the convective envelopes of field halo stars during theupper red giant branch phase of evolution is similar to that of manyglobular cluster giants. The notable exception appears to be M13, inwhich stars exhibit deep mixing at a greater rate; this may account forthe high incidence of very low oxygen abundances among the most luminousgiants in M13 in comparison to M3.

Oxygen Abundances in Metal-poor Stars
We present oxygen abundances derived from both the permitted andforbidden oxygen lines for 55 subgiants and giants with [Fe/H] valuesbetween -2.7 and solar with the goal of understanding the discrepancy inthe derived abundances. A first attempt, using Teff valuesfrom photometric calibrations and surface gravities from luminositiesobtained agreement between the indicators for turn-off stars, but thedisagreement was large for evolved stars. We find that the difference inthe oxygen abundances derived from the permitted and forbidden lines ismost strongly affected by Teff, and we derive a newTeff scale based on forcing the two sets of lines to give thesame oxygen abundances. These new parameters, however, do not agree withother observables, such as theoretical isochrones or Balmer-line profilebased Teff determinations. Our analysis finds thatone-dimensional, LTE analyses (with published non-LTE corrections forthe permitted lines) cannot fully resolve the disagreement in the twoindicators without adopting a temperature scale that is incompatiblewith other temperature indicators. We also find no evidence ofcircumstellar emission in the forbidden lines, removing such emission asa possible cause for the discrepancy.

A grid of synthetic spectra and indices Fe5270, Fe5335, Mgb and Mg2 as a function of stellar parameters and [alpha/Fe]
We have computed a grid of synthetic spectra in the wavelength rangelambda lambda 4600-5600 Å using revised model atmospheres, for arange of atmospheric parameters and values of [alpha -elements/Fe] = 0.0and +0.4. The Lick indices Fe5270, Fe5335, Mgb and Mg2 aremeasured on the grid spectra for FWHM = 2 to 8.3 Å. Relationsbetween the indices Fe5270, Fe5335 and Mg2 and the stellarparameters effective temperature Teff, log ; g, [Fe/H] and[alpha /Fe], valid in the range 4000 <= Teff <= 7000 K,are presented. These fitting functions are given for FWHM = 3.5 and 8.3Å. The indices were also measured for a list of 97 reference starswith well-known stellar parameters observed at ESO and OHP, and theseare compared to the computed indices. Finally, a comparison of theindices measured on the observed spectra and those derived from thefitting functions based on synthetic spectra is presented.Observations collected at the European Southern Observatory (ESO), LaSilla, Chile and at the Observatoire de Haute Provence (OHP), St-Michel,France.All Tables of Appendices A and B are only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/404/661

Mapping the Galactic Halo. VI. Spectroscopic Measures of Luminosity and Metallicity
We present our calibration of spectroscopic measures of luminosity andmetallicity for halo giant candidates and give metallicities anddistances for our first sample of spectroscopically confirmed giants.These giants have distances ranging from 15 to 83 kpc. As surveys reachfarther into the Galaxy's halo with K giant samples, identification ofgiants becomes more difficult. This is because the numbers of foregroundhalo K dwarfs rise for V magnitudes of 19-20, typical for halo giants at~100 kpc. Our photometric survey uses the strength of the Mg b/H featurenear 5170 Å to weed K dwarfs out of the disk and thick disk, butwe need spectroscopic measures of the strength of the Ca II K, Ca Iλ4227, and Mg b/H features to distinguish between the verymetal-poor dwarfs and halo giants. Using a full error analysis of ourspectroscopic measures, we show why a signal-to-noise ratio of ~15pixel-1 at Ca I λ4227 and ~10 at Ca II K is needed forreliable luminosity discrimination. We use the Ca II K and Mg b featuresto measure metallicity in our halo giants, with typical errors (randomplus systematic) of 0.3 dex for [Fe/H] values from -0.8 to -3.0.

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars
We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.

Behavior of Sulfur Abundances in Metal-poor Giants and Dwarfs
LTE and non-LTE (NLTE) abundances of sulfur in six metal-poor giants and61 dwarfs (62 dwarfs including the Sun) were explored in the range of-3<~[Fe/H]<~+0.5 using high-resolution, high signal-to-noise ratiospectra of the S I 8693.9 and 8694.6 Å lines observed by us andmeasured by François and Clegg, Lambert, & Tomkin. NLTEeffects in S abundances are found to be small and practicallynegligible. The behavior of [S/Fe] versus [Fe/H] exhibits a linearincreasing trend without plateau with decreasing [Fe/H]. Combining ourresults with those available in the literature, we find that the slopeof the increasing trend is -0.25 in the NLTE behavior of [S/Fe], whichis comparable to that observed in [O/Fe]. The observed behavior of S mayrequire chemical evolution models of the Galaxy, in which scenarios ofhypernovae nucleosynthesis and/or time-delayed deposition intointerstellar medium are incorporated.

Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships
As an investigation of the origin of ``α-poor'' halo stars, weanalyze kinematic and abundance data for 73 intermediate-metallicitystars (-1>[Fe/H]>=-2) selected from Paper I of this series. We findevidence for a connection between the kinematics and the enhancement ofcertain element-to-iron ([X/Fe]) ratios in these stars. Statisticallysignificant correlations were found between [X/Fe] and galacticrest-frame velocities (vRF) for Na, Mg, Al, Si, Ca, and Ni,with marginally significant correlations existing for Ti and Y as well.We also find that the [X/Fe] ratios for these elements all correlatewith a similar level of significance with [Na/Fe]. Finally, we comparethe abundances of these halo stars against those of stars in nearbydwarf spheroidal (dSph) galaxies. We find significant differencesbetween the abundance ratios in the dSph stars and halo stars of similarmetallicity. From this result, it is unlikely that the halo stars in thesolar neighborhood, including even the ``α-poor'' stars, were oncemembers of disrupted dSph galaxies similar to those studied to date.

Three-dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks
We explore the application of artificial neural networks (ANNs) for theestimation of atmospheric parameters (Teff, logg, and [Fe/H])for Galactic F- and G-type stars. The ANNs are fed withmedium-resolution (Δλ~1-2 Å) non-flux-calibratedspectroscopic observations. From a sample of 279 stars with previoushigh-resolution determinations of metallicity and a set of (external)estimates of temperature and surface gravity, our ANNs are able topredict Teff with an accuracy ofσ(Teff)=135-150 K over the range4250<=Teff<=6500 K, logg with an accuracy ofσ(logg)=0.25-0.30 dex over the range 1.0<=logg<=5.0 dex, and[Fe/H] with an accuracy σ([Fe/H])=0.15-0.20 dex over the range-4.0<=[Fe/H]<=0.3. Such accuracies are competitive with theresults obtained by fine analysis of high-resolution spectra. It isnoteworthy that the ANNs are able to obtain these results withoutconsideration of photometric information for these stars. We have alsoexplored the impact of the signal-to-noise ratio (S/N) on the behaviorof ANNs and conclude that, when analyzed with ANNs trained on spectra ofcommensurate S/N, it is possible to extract physical parameter estimatesof similar accuracy with stellar spectra having S/N as low as 13. Takentogether, these results indicate that the ANN approach should be ofprimary importance for use in present and future large-scalespectroscopic surveys.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Corbeau
Right ascension:12h51m25.20s
Declination:-13°29'28.2"
Apparent magnitude:7.993
Distance:303.951 parsecs
Proper motion RA:-270.9
Proper motion Dec:-322.3
B-T magnitude:8.93
V-T magnitude:8.071

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 111721
TYCHO-2 2000TYC 5541-583-1
USNO-A2.0USNO-A2 0750-07966813
HIPHIP 62747

→ Request more catalogs and designations from VizieR